Entries in MR-PET (1)


Fishing for Targets

Following precedent, I will begin by introducing myself. My name is Stephanie Lie, and I am a rising junior at Boston University's Sargent College of Health and Rehabilitation Sciences currently pursuing a degree in Human Physiology. Upon graduating, I hope to attend medical school, and I am excited to use this summer with the Hooker Group as an opportunity to explore the development and basic science behind some of the technology that I will potentially be using, from a clinical standpoint, in my future career, while also supplementing some of the topics I’m learning in school with some real life experience. Unlike my fellow summer interns, I have not ventured very far from the nest, as I was born and raised in a suburb outside of Boston, and I now attend school and work in and around the city. Therefore, outside of work within the group, I will not have to face the intimidating challenge of navigating a new city; instead, my challenges will lie in transitioning to the life of a suburban commuter and tackling the monster that is Boston auto traffic and the MBTA.

However, I digress. This summer I will be working under the guidance of Ronald on peripheral MR-PET imaging. I am currently looking at data from full body, NHP scans utilizing some of Changning’s HDAC inhibitor tracers that he’s developing for the brain, and hopefully I will find that they specifically bind outside of the brain as well. From the literature, I’m learning that HDACs appear to play an interesting, epigenetic role in many different conditions, whether it be neurodegenerative diseases, psychological disorders, or, of particular interest to me while working in the periphery, cancer. Because these new compounds are focused on use in the brain, my exploration of their effects in the rest of the body are much like that of a fishing boat moving out into uncharted waters: I will make educated guesses as to where to drop lines (or in my case, Volumes of Interest in the images) based on literature and my mentors’ advice, but like with most research, I run the risk of pulling up empty. However, high risk yields high reward, right? The idea of finding an area where one of these compounds effectively binds means potentially finding a tracer for earlier cancer detection in places buried in the thoracic cavity and abdominal region; as someone who wants to go into the medical field, the idea of developing these types of diagnostic tools is pretty cool.

While the overall idea of what I will be doing this summer appears quite straightforward, in my first few weeks here, I have learned and experienced one of the hallmarks of research: translating those ideas into a reality can be far from straightforward. In order to reach the point of textbook perfection that I have seen in my undergraduate courses thus far, there are plenty of imperfections and challenges to overcome first. So far, I’ve had to tackle the learning curves of using various types of imaging software, finding alternatives when the preferred system broke down, and learning the new languages of radiology and computer science, all while facing the challenges of working around the imperfections that come with real-life data acquisition. While it’s certainly been challenging, by single-handedly keeping Google, PubMed, and Wikipedia in business and exploring different computer programs, I’m starting to get my sea legs underneath me, and I’m very excited to see what’s at the end of my lines.    

- Steph Lie