Entries in memory (2)

Wednesday
Dec092015

Manipulating Memory: From Inception to Neuroscience 

In Christopher Nolan's 2010 movie, Inception, Leonardo DiCaprio plants an idea or a specific memory in another person’s subconscious through a dream. Is this possible? Might be. MIT neuroscientists Liu and Ramire et al. have shown that they were able to create false memories in mice via optogenetics. Optogenetics is a technique that utilizes light stimuli to control specific genetically modified cells in living tissue via light-gated ion channel.

In their study, the mice were firstly subjected to a safe environment, Box A. Memories of this new environment were recorded in certain cells, which were programmed to respond to pulses of light. By applying light pulses, the mice will recall the memory of Box A. Then the mice were placed in a completely different environment, Box B, where the mice were subjected to foot shocks, with simultaneous delivery of light pulses into their brains to reactivate the memory of Box A. This resulted in a negative association between the light-reactivated memory of Box A and the foot shocks that the mice obtained in Box B. When the researchers put the mice back into Box A, it was observed that the mice displayed heightened fear responses. A false fear memory was implanted into the mice brain via artificial means.

This work has shown that memories can be altered during the recall process. The researchers pointed out that recall could make memories more labile and external information might be incorporated into existing memories occasionally over time. As Ramirez explained in their TEDx Boston talk, “The mind, with its seemingly mysterious properties, is actually made of physical stuff that we can tinker with.” Their work illustrates the increasing ability of neuroscientists to control, manipulate, and engineer memory in the brain.

 

Ref:

(1) Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., Tonegawa, S. Nature, 2012, 484 (7394), 381-385.

(2) Ramirez, S., Liu, X., Lin, P. A., Suh, J., Pignatelli, M., Redondo, R. L., Tonegawa, S. Science, 2013, 341(6144), 387-391.

(3) https://www.youtube.com/watch?v=kDXJhxLzmBQ

Thursday
Jun122014

Can Dancing Improve your Ability to Remember?

 

A few weeks ago I was on the Green line heading to North Station when I realized that a young woman a few seats away was carrying a pair of tap shoes. My dance background is quite strong, but I haven’t put on my tap shoes in three years. I first started dancing at age three when my mom, some-what frustrated with my high-energy antics, signed me up as a way to tire me out. When I was packing for my summer in Boston, I brought my tap shoes because I knew I wanted to get back into it.

Long story short, I stopped this woman after we got off the train. She recommended a studio for me to look up, and I have been going to tap class once a week ever since.

What surprised me the most about getting back into my shoes was my ability recall dances that I have not seen or performed in years. My dance memory is far better and more accurate than most of my memory. I can even recall dances that I learned for the first time over a decade ago.

Upon investigating the connection between dancers and good long-term memory, I wanted to know what happened in the brain in response to high-intensity dance training and if there were changes in way new long term memories are created or stored. I found that studies have shown that dancers are able to use mental imagery better and with higher reproducibility than non-dancers even in laboratory settings (Blasing et al., 2012). Many areas of the brain are activated during motor learning, included many overlapping areas which could improve devoted concentration and therefore is thought to create a stronger memory. In a case-study, dancers were able to recall dances learned from over three years previously (Steven et al., 2010). The brain function behind long-term kinestetic sequence memory (dance is considered a sequence of steps) is currently not known and is difficult to study. Most studies have focused on ways to disrupt this long-term memory and have not been designed to determine how the disruptions are occurring in the brain, perhaps due to limited tools to study the brains of humans till relatively recently.

Scientists have used both fMRI and PET to study the brains of dancers, but it doesn’t appear that there is much current study using these techniques on long-term dancer memory. Typically, subjects have to remain as still as possible in the large scanners required for these studies. However, a group recently found a way to let ballroom dancers move through the steps with their feet on an inclined apparatus while lying in a PET scan (Blasing et al., 2012). They were able to see activated regions of the brain which were exclusively associated with dancing. This could open the door to more kinesthetic memory based studies using PET and fMRI.

Jaclyn

For more information on what we do know about the brain and dance see: Nerurocognitive Control in Dance Perception and Performance (Blasing et al., 2012)

For more information on dance and long-term memory see: Backwards and Forwards in Space and Time: Recalling Dance Movement from Long-Term Memory (Steven et al., 2010)