Friday
Jul072017

New Hope for Careers in Science

Check out http://sciencemag.org/careers for interesting articles and links to material covering all stages of careers in science. 

There are interesting blogs and articles as well as links to additional articles and publications on topics including the challenges of being a PhD student and the utility of pursuing a postdoc. You will also find content offering insight into a career as a staff scientist, promotion, mentoring, and work life balance as well as discussion of timely issues such as gender differences and diversity in science.

A recently posted Q&A with Stanford Professor and Nobel laureate Michael Levitt discussed his study in PNAS regarding funding trends of the National Institutes of Health (NIH). The study draws attention to the fact that over a 32 year period there has been a decrease in the number of younger (<46 years) basic science principal investigators and the need for NIH to become more pro-active in the context of increasing funding for younger researchers [1]. The good news is that given policies first implemented in 2008 addressing funding issues experienced by new investigators, Levitt does foresee career possibilities opening up for younger scientists in the near future.  

See http://www.sciencemag.org/careers/2017/06/why-it-might-be-good-time-start-career-science

 

-NRZ

 

References

Levitt and Levitt. Future of fundamental discovery in US biomedical research. PNAS. June 20, 2017

Friday
Jun162017

Carbon bond formation may be more flexible than we think!  

Are you an organic chemist and cringe when you see a carbon with five bonds drawn in your student’s homework? Cringe no more, it may not be as wrong as you think!

Recently, Malischewski and Seppelt were able to isolate the hexamethylbenzene dication under superacidic conditions and even obtain a crystal structure [1]. One of the carbon atoms appears to be bound to six (!) other carbon atoms, which is definitely more than the four bonds that we’re used to drawing in introductory organic chemistry. Now, before you get nervous - the actual bond orders are significantly lower than one, so if you sum up all six, the magic limit of four is not exceeded, the octet isn’t violated and generations of organic chemists can continue to sleep in peace. To be fair, a similar effect had previously been described in the context of the non-classical norbornyl carbocation [2]. The concept of carbon with more than four binding partners isn’t as artificially constructed as one might think, it actually exists in nature and has a profound impact on all of us. FeMoCo, an enzyme cofactor essential to nitrogen fixation, has a hexacoordinated C4- center [3]. Now that’s unique!

Bottom line, as long as the bonds aren’t the classical 2-center-2-electron bonds, carbon can be more flexible than we typically give it credit for... you probably still shouldn’t draw more than four bonds per carbon in your average homework assignment though.

-MS-B

 


[1]Angewandte Chemie International Edition 2016, 56, 368-370

[2] Science 2013, 341, 62-64

[3] Science 2011, 334, 974-997

 

Wednesday
May172017

The science of super-agers

According to the Guinness World Records the oldest person ever living on earth was 122 years and 164 days old Jeanne Louise Calment, who was born on 21 February 1875 and died on 4 August 1997 [1]. Today’s oldest living person, with an authenticated date of birth, appears to be Emma Martina Luigia Morano of Vercelli, who was born on 29 November 1899 [2].

The life expectancy in the whole population steadily increased since the 19th century (see Figure 1a, adapted from [3]), foremost attributable to a sharp decrease of infant-mortality, but also to a reduction in late-life mortality.

However, despite better access to health care, clean water, enough food and an increasing consciousness of a ‘healthy lifestyle’ (decreasing number of smokers, being physically active until an old age, …) this didn’t change the mean of the very old ages significantly, as well as the age of the oldest person ever didn’t change since Jeanne Louise Calment died in 1997, leading to the assumption of a biological limit of human ageing.

As you can see in Fig. 1b the relative changes of people reaching a specific age drop at the very old ages, emphasizing the hypothesis of a limit in human life expectancy.

Scientists hope that following years will let them gain more insights into this area of research, as more people with authenticated dates of birth reach these old ages.

Furthermore, they are looking for mechanisms of this hypothesized limit and possible interventions in order to find ways of improving life expectancy even further…

- NS

 

[1] http://www.guinnessworldrecords.com/world-records/oldest-person (05/14/2017)

[2] http://www.guinnessworldrecords.com/news/2016/5/guinness-world-records-announces-emma-martina-luigia-morano-as-worlds-oldest-liv-428983 (05/14/2017)

[3] X Dong et al. Nature 1–3 (2016) doi:10.1038/nature19793 (05/14/2017)

Monday
May012017

A Plastic Eating Caterpillar: An Accidental Discovery with Potential?

Humans produced 311 million tons of plastic in 2014, and that number is expected to double in the next two decades. About 40 percent of this is plastic bags, containers, and other products made of polyethylene [2]. Much of this plastic is discarded in landfills, and new solutions for plastic degradation are urgently needed.
Federica Bertocchini, a beekeeper and researcher in Spain, found her hives infested with waxworms, a type of caterpillar that feeds on beeswax. She placed the worms in a plastic bag while she cleaned out the hives, and when she returned to the bag, it was full of holes! Surprised, Bertocchini created a waxworm homogenate and applied that to a polyethylene plastic bag. After half a day, the bag had about 13% less mass, demonstrating that the breakdown was not purely mechanical. She worked with biochemists at the University of Cambridge to analyze the chemistry more closely. They determined using FTIR that polyethylene treated with worm homogenate had ethylene glycol present, suggesting that the polyethylene was being broken down into ethylene glycol.   
 
Other organisms with plastic degrading abilities have been discovered in recent years. In 2016, a Japanese team identified a bacterium that can degrade polyethylene terephthalate [5]. In 2014, Chinese scientists found that two species of bacteria from the gut of Indian mealmoths can degrade polyethylene. However, these microbes worked over the course of weeks or months [3]. Federica’s waxworms shredded polyethylene shopping bags within hours.
 
Bertocchini believes the waxworms may have evolved an ability to degrade polyethylene because of its carbon bond similarity to wax. Others are not convinced of the waxworm’s promise. Ramani Narayan says that the degradation, even if it is producing ethylene glycol, is “not a magical solution to plastics waste management”. The worms could pass microplastics into the environment and transport these toxins up the food chain.
 
Bertocchini says that the application of these worms could stem from identifying the enzymes that are actually degrading the polyethylene. Researchers do not know what exactly allows these worms to degrade polyethylene. The responsible enzyme could then be produced at high volumes, rather than using millions of actual worms. This wax worm discovery is still far from a solution to our planet’s growing piles of plastic, but I hope it can lead to an advancement with a real environmental impact.
 
--CJW
                                                                                                                       
References
1. Bombelli P, Howe CJ, Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology. April 2017.
2. Neufeld L, Stassen F, Sheppard R, Gilman T. The New Plastics Economy: Rethinking the future of plastics. World Economic Forum. January 2016.
3. Yang J, Yang Y, Wu WM, Zhao J, Jiang L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ. Sci. Technol. November 2014.
4. Yong E. The Very Hungry Plastic-Eating Caterpillar. The Atlantic. April 24, 2017.
5. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kumura Y, Oda K. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science. March 2016.
 
Images: Wayne Boo/ USGS Bee Inventory and Monitoring Lab (waxworm)
Federica Bertocchini (waxworm chewing plastic)

 

Saturday
Apr222017

Bumblebees playing soccer – an example of behavioral flexibility and social learning in insects

Have you ever seen bumblebees playing soccer? In a recent study done by Loukola et al. [1], bumblebees were taught to transfer a ball in marked location and bees were rewarded after a successful performance. The aim of this study was not only to enjoy some nice playtime with bees but also to observe behavioral flexibility and social learning. Social learning is a phenomenon in which a new behavior is learned by the observation and imitation of others, whereas behavioral flexibility is considered to reflect one’s ability to change a pattern of behavior and create novel solutions to a problem. These features are thought to be common in mammals and birds, but are not well understood in insects.

By observing how bumblebees learned to play soccer, it was found that social learning is the best way for bees to learn the game [1].  Bees were not only copying the demonstrated ball transport method but also, were able to improve upon learned methods and develop more a convenient approach[1]. This kind of behavioral flexibility has not been noted before in insects, although behavior and cognition of insects has been widely studied [2,3]. But back to our first question; if you have not seen how a bee plays soccer, check out the videos from the supplementary material of Loukola et al. (http://science.sciencemag.org/content/355/6327/833), or see collected clips https://www.youtube.com/watch?v=ToZDCo51c_I

- JR 


References:

[1] Loukola OJ, Perry CJ, Coscos L, Chittka L. Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science. 2017, 355(6327):833-836. doi: 10.1126/science.aag2360.

[2] Chittka L, Niven J. Are bigger brains better? Curr Biol. 2009, 19(21):R995-R1008. doi: 10.1016/j.cub.2009.08.023.

[3] Giurfa M. Cognition with few neurons: higher-order learning in insects. Trends Neurosci. 2013, 36(5):285-94. doi: 10.1016/j.tins.2012.12.011