« Complement Proteins May Provide a Gateway to Early Alzheimer’s Disease Therapeutics | Main | I see, therefore I am »
Tuesday
Apr192016

The rise of Pharming in Agriculture

Plants have been used for the treatment of diseases for thousands of years – long before researchers were able to identify and purify the active compounds. Salicin, which is found in willows, is a great example of such a compound. The bark and leaves of willow trees were being used to treat fevers and headaches around 400 B.C. However, it wasn’t until the 1800s that scientists discovered the active compound in willow trees (salicin) that conferred those beneficial properties.

In the last few decades, scientists have started using plants differently for the treatment of diseases. Sijmons et. al. demonstrated that gene insertion is possible in plants by showing that tobacco and potato plants could express the human serum albumin protein. This process of gene insertion is now referred to as pharming (a combination of “farming” and “pharmaceutical”). Initially, the field faced many challenges, including disapproval from anti-genetic-modification movements and regulatory uncertainty. Low yields as well as purification cost were other hurdles faced and it wasn’t until around 2009 that pharming obtained a realistic opportunity for commercial development. In 2012, the first pharming product (taliglucerase alfa, used for the treatment of Gaucher’s disease) was approved for use in humans. This attracted major pharmaceutical companies such as Mitsubishi Tanabe Pharma, which acquired Medicago (plant-based vaccines developer) in 2013.

 

The major benefit of pharming is that it does not require expensive infrastructure, as the plants are generally grown in an open environment. This enables the production capacity to be increased, by keeping the cost low. However, like any other process, pharming also has disadvantages. A major environmental concern is pollination/seed contamination. Other risks include accidental entry of the drug into food chains and consumption by non-targeted organisms.

Personally, I think there is still some way to go before pharming becomes the “go to” method for large-scale drug production. But interest in the process has increased exponentially in the past few years, suggesting that it has the potential to become an important technique in drug development.

~AKHD

P. Sijmons et. al. (1990) “Production of correctly processed human serum albumin in transgenic plants” Biotechnol. 8:217-21.

E. Stoger et. al. (2014) “Plant molecular pharming for the treatment of chronic and infectious diseases” Annu Rev Plant Biol. 65:743-768.

 

References (3)

References allow you to track sources for this article, as well as articles that were written in response to this article.

Reader Comments

There are no comments for this journal entry. To create a new comment, use the form below.

PostPost a New Comment

Enter your information below to add a new comment.

My response is on my own website »
Author Email (optional):
Author URL (optional):
Post:
 
Some HTML allowed: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <code> <em> <i> <strike> <strong>